7 research outputs found

    Distributed tree rearrangements for reachability and robust connectivity.

    Get PDF
    Abstract. We study maintenance of network connectivity in robotic swarms with discrete-time communications and continuous-time motion capabilities. Assuming a network topology induced by spatial proximity, we propose a coordination scheme which guarantees connectivity of the network by maintaining a spanning tree at all times. Our algorithm is capable of repairing the spanning tree in the event of link failure, and of transitioning from any initial tree to any other tree which is a subgraph of the communications graph

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Distributed motion constraints for algebraic connectivity of robotic networks

    No full text
    This paper studies connectivity maintenance of robotic networks that communicate at discrete times and move in continuous space. We propose a distributed coordination algorithm that allows the robots to decide whether a desired collective motion breaks connectivity. We build on this procedure to design a second coordination algorithm that allows the robots to modify a desired collective motion to guarantee that connectivity is preserved. These algorithms work under imperfect information caused by delays in communication and the robots’ mobility. Under very outdated information, the proposed algorithms might prevent some or all of the robots from moving. We analyze the correctness of our algorithms by formulating them as games against a hypothetical adversary who chooses system states consistent with observed information. The technical approach combines tools from algebraic graph theory, linear algebra, and nonsmooth analysis
    corecore